

VERTICAL ELECTRICAL RESISTIVITY SOUNDING FOR GROUNDWATER

IN BISHINI AREA OF KADUNA STATE

TALABI, A. O¹ & AYODEJI K. OGUNDANA²

¹Ekiti State University, Ado-Ekiti, Nigeria ²Department of Geology, Afe Babalola University, Ado Ekiti, Nigeria

ABSTRACT

Groundwater occurrence in Bishini area of Kaduna state was investigated using Electrical resistivity method for the purpose of sitting viable borehole. A total of twenty-seven (27) vertical electrical soundings (VES) using Schlumberger electrode array were acquired with a maximum electrode separation of AB/2=150 m, using the ABEM Terrameter SAS 300C.

Interpreted sounding curves revealed predominant of Three to five electro-stratigraphic units were delineated in the study area, namely: the topsoil (indurated laterite), lateritic clay, weathered basement rock, fractured basement rock and fresh basement. The weathered and / fractured basement rocks constitute the aquiferous zones with the weathered layer aquifer (63%) predominant while the weathered/fractured (unconfined) aquifer (7.4%) was least represented. The first two layers have variable resistivity of between 76 and 22938 Ω -m. Weathered basement with average resistivity and thickness values of 211.52 Ω -m and 16.4m respectively was encountered in all the sounding locations with exception of VES 23 and VES 26. Weathered/fractured basement was encountered in six locations with resistivity and depth to the top of fracture basement ranging from 77 - 977 Ω -m and 5 -14m respectively. The weathered layer (5 – 37m overburden thickness) and weathered/fractured basement (20 – 62m overburden thickness) found within basement depressions constitutes the main aquiferous units. The geo-electric sections in the N-S, NW- SE and NE-SW directions revealed VES 9, VES13, VES 19 and VES 21 as sounding locations that could be drilled. VES 21 that was fractured with resistivity of 977 Ω -m and overburden thickness of 62m was considered most suitable for borehole drilling provided there is no drop in volume of water as drilling progresses.

KEYWORDS: Vertical Electrical Sounding, Sounding Curves, Electro-Stratigraphic Units, Basement Depressions, Aquiferous Units

INTRODUCTION

Water is a key ingredient surporting food production, sanitation, rural livelihoods as well as ensuring continuity and functioning of ecosystem. It dictates the pace of settlement, agricultural and industrial development of any society and even in recent time, establishment of any human settlement was usually centered on available source of water supply and in modern time, issue of water has taken prominences in global matters (Humaira and Jose, 2009). Chunk of available World water in the oceans (97.5%) are salty and not useful for domestic and industrial applications. The remaining 2.5% constitutes fresh water, out of this; surface water and groundwater have 0.4% and 30.1% respectively while the remaining 69.50% are locked up in ice caps and glaciers (Gleick, 1996). Apart from the quantity advantage of groundwater over

surface water, common knowledge shows that groundwater is of better quality as it is naturally filtered while percolating through the subsurface layers of the earth. In addition, the distributory problem associated with surface water is of no consequence with respect to groundwater as it is available virtually anywhere below the ground surface though with variable quantity.

Nigeria as a whole is rich in surface water about (224 trillion Litres per year) and that of groundwater is about (50 million trillion Litres per year) for a population of about 128 million with domestic consumption need of 6.0 billion Litres per year (Akujieze et al., 2003). Despite the enormous water resources in the country, groundwater resources are considered deficient. Extensive area of the country i.e. about 50% is covered by the crystalline rocks of the Basement Complex which are poor aquifers and contribute little to the groundwater supply of Nigeria. The Basement Complex rocks made up mainly of igneous and metamorphic rocks are neither porous nor permeable except in areas where the rocks are shattered, jointed or fissured. Solid rocks of the Basement Complex have porosities ranging from 1 to 3 per cent. Permeability is also small because the pores are small and disconnected (Azeez, 1972). Although folds, faults, joints and shear zones are common, they are too localized to be of significant importance as reservoirs of water. Apart from the fracture systems that control basement aquifers, the thickness of the weathered regolith overlying the crystalline rocks is another important factor. Weathering may therefore render the normally impermeable crystalline rocks suitable for ingress and storage of water. Electrical resistivity survey has been found useful in delineating the lateral and vertical limits of the diastrophic features like faults, fractures, joints and shears and delimit the extent and thickness of the weathered mantle (Olorunfemi and Oloruniwo, 1985, Olorunfemi and Olayinka, 1992, Bala and Ike, 2001). Despite the problems associated with basement aquifers, Azeez (1972) has pointed out that large number of hand-dug wells in the rural areas not supplied with pipe-borne water was an indication that considerable water was available underground though occurrence was erratic because of the discontinuous nature of the groundwater source area. Low success ratio of previous borehole programmes in the Nigeria's Basement Complex was attributable to well sites by intuition (Azeez, 1972, Oyinloye and Ademilua, 2005). What is needed is a scientific method of locating well sites by means of sophisticated geophysical instruments. Hence, the vertical electrical sounding survey was aimed at investigating the hydrogeological conditions of Bishini area for locating water potentially viable to sustain people in the area for domestic purposes. This was to be accomplished by taking adequate number of resisitivity soundings suitably distributed over the area.

Site Location and Geology

Bishini lies between co-ordinates $10^{\circ}26'$ to the North and $7^{\circ}52'$ to the East within the Basement Complex of Nigeria (Figure 1). The area is a little less than half square kilometer. Bishini falls within the geologic terrain underlain by the Precambrian basement complex rocks of Nigeria characterized by the Migmatite-gneiss complex, older granites, charnockites, quartzite and minor intrusive lithologies (Rahaman, 1988). The local geology showed that the area is underlain by rocks of the basement complex (migmatites, gneisses and granite). Outcrops are rare except for a few Laterite capping the bedrock. The Laterite consists of different horizons with distinct petrographic characteristics which may have significant influence on the shape of the VES curves. The surface terrain is fairly uniform permitting easy stretch of the Schlumberger array.

METHODOLOGY

The electrical resistivity method has been applied extensively in groundwater exploration because it can clarify

Vertical Electrical Resistivity Sounding for Groundwater in Bishini Area of Kaduna State

the subsurface structure, delineate groundwater zone and is inexpensive (Mazae et al., 1985). The resistivity survey was carried out using ABEM, Tetrameter SAS 300C employing the collinear four electrode Schlumberger configuration array. The electrical sounding stations were sited on fairly long straight stretch of land to reduce error in both resistivity measurements and interpretation. The successive electrode positions were measured and marked on either side of the centre along a straight line. The current electrode separations [AB/2] varied from 1.0 to 150m while the potential electrodes were kept at an initial separation of 0.5m. The potential electrodes were increased only when it became too small for reliable readings to be obtained and the separation did not exceed 4m in any VES station. The data collection points of the study area are shown in figure 1.

Figure 1: Location of the Study Area

RESULTS AND DISCUSSIONS

Twenty seven VES locations were occupied in the study area. Results obtained from the interpreted data are presented in form of geoelectric curves (Figure 2) and sections (Figure 3) while comparative details of the various geoelectric parameters are presented in Table 1. Interpretation could be qualitative or quantitative. In basement terrain, groundwater occurrence is in the porous and permeable weathered basement rocks and in the fractured/jointed basement columns. Olorunfemi and Fasuyi, (1993), identified five different combinations of the weathered basement aquifer and the fractured/jointed aquiferous zone in the basement complex of Nigeria. The combinations include weathered layer aquifer, weathered/fractured (unconfined) aquifer, weathered/fractured (confined) aquifer, weathered/fractured (unconfined)/fractured (confined) aquifer and fractured (confined) aquifer. Furthermore, it was established that the highest groundwater yield is often obtained from weathered/fractured (unconfined)/fractured (confined) aquifer. In this research, qualitative interpretation revealed predominant of the weathered layer aquifer (63%) typified H and QH curves while the weathered/fractured (unconfined) aquifer with QHA and HA curve signatures (7.4%) was least represented. Other types of aquifers include weathered/fractured confined (11%) and fractured confined (18.52%) with HKH and KH curve signatures respectively. Furthermore, maximum of five different subsurface lithologic units which include topsoil, lateritic-clay, weathered basement, fractured basement and fresh basement were established. The thickness of the first layer varied between 1 and 9m while the resistivity ranged from 212 - 11048Ω -m. Similarly, the second layer has thickness that ranged

from 2 - 10m and resistivity of 76 - 22938 Ω -m. The low resistivity values in some VES locations were consequent of varied lithology and water retention capacity of the soils as water percolates through the sub surface. High resistivity up to 22938Ω -m, typified the hard indurated red laterite common to tropical regions of Nigeria. The water bearing layer has thickness of 4 – 42m and resistivity that ranged between 30 and 552 Ω -m. VES locations (1, 9, 11, 12 and 13) with low resistivity values and high overburden thickness (overburden thickness; 21 - 45m, resistivity; $87 - 248\Omega$ -m) and the fractured layers VES 3 and VES 7 are viewed as likely locations for borehole sitting. Figure 3a shows the resistivity crosssection constructed for VES points 2, 1, 9, 11, 16 and 17 in the N - S direction. The figure delineates three to four layers along this profile. The resistivity values of the third layer (aquifer) vary from 84Ω -m to 552Ω -m while the thickness ranged between 14 and 25m. VES 9 with maximum thickness of 25m and resistivity of 134Ω -m is most favourable for borehole sitting along this profile. Fresh basement rocks with resistivity values ranging from 1930Ω -m to 68711Ω -m and of infinite thickness are found beneath the aquiferous layer. As for the resistivity cross section in the NW-SE direction (Figure 3b) (Profile 2) across VES24, VES 13, VES 11 and VES 19, four to five layers were encountered with the maximum five layers restricted to VES 19. VES 19 with aquifrous layer (85 Ω -m, 8m thick) and a pre-basement horizon (234 Ω -m, 9m thick) representing a fractured bedrock sequence could constitute viable groundwater source. All the layers are underlain by basement rock of infinite thickness and resistivity of $1095 - 65416\Omega$ -m. The third geo-electric section (Figure 3c) cutting across VES 6 VES 9, VES 21 and VES 20 in the NE-SW direction has maximum of four lithologic units. VES 21 that is characterized by very thin overburden and with significantly thick column of the basement that is densely fractured with layer resistivity of 977Ω -m and thickness of 57m typified by geoelectric curve HA is considered favourable for borehole sitting. The fresh basement rocks of infinite thickness and resistivity value of 67829Ω -m underlying the horizon showed wide contrast. The depth to basement (Figure 4) varies from 6m at VES 25 representing the basement high to 62m at VES 21, the deepest points in the study area which corresponds to basement depression (Figures 3c and 4). VES 21 constitutes the most suitable layer for groundwater occurrence and preferred point for drilling.

Index Copernicus Value: 3.0 - Articles can be sent to editor@impactjournals.us

Figure 3a: Geoelectric Section across N-S Direction (Profile 1)

Figure 3b: Geoelectric Section across NW-SE Direction (Profile 2)

Figure 3c: Geoelectric Section across NE-SW Direction (Profile 3)

Ves Pointa	¤	la	2 a	3a	40	50	60	7a	8 ¤	9 a	100	11 0	12a	13a	14a t
CURVE TYPES	٥	Ho	KHO	HKHO	Ho	HA	O QH	HKHO	Ho	KHO	QHo	QHo	Ho	QHo	Hoj
LTIHOLOGY O	0	0	0	٥	٥	0	a	0	0	o	0	0	O	٥	0 3
TOP-SOIL=	TOPo	00	00	00	00	00	00	00	00	00	00	00	00	00	00 1
	BASEO	60	20	20	20	10	10	10	20	10	10	30	40	2°	20 1
	THICKNESSO	60	20	20	20	10	10	10	20	10	10	30	40	20	20 1
	Ωmo	7840	5990	2120	15520	181	80 3382	0 15870	28820	6050	61210	14530	9900	52830	6140 1
LATERITIC- CLAY0	TOPo	-0	20	20	-0	10	10	10	-0	10	10	30	ō.	20	-0 }
	BASEO	6	60	20	-0-	40	a 8a	30	-0-	30	110	90	ъ-	60	-0 [
	THICKNESSO	. 0	40	20	-0	30	70	20	-0	20	100	60	-0	40	-0 (
	Ωmo	9	11690	760	-0	450	0 1219	0 5310	-0	229380	12400	6430	-0	12000	-0 }
WATER BEARING SANDY &GRAVEL	TOPo	60	60	40	20	40	80	30	2o	30	110	90	40	60	20 1
	BASEO	290	200	90	160	16	0 130	110	370	280	210	300	460	290	220 1
	THICKNESSO	230	140	50	140	12	0 100	80	350	250	100	210	420	230	200 1
	Ωmo	1810	840	3340	770	74	a 76a	660	3450	1340	1720	870	2480	830	1090 1
FRACTURED BASEMENTO	TOPO	-0	-0	90	-D	-0		70	-0-	9	-0	-0	-0	-0	-0 1
	BASEC	-0	-0-	240	-0	-0	-0	200	-0-	¢	-0	-0	-0-	-0	-0 1
	THICKNESSO	5	5-	150	-0-	-0	9	130	9	6	-0	-0	5	5	-0 }
	Ωmo	0 -	9	770	Q-	4	9	800	9	-9	-0	-0	ъ	-0	-0 1
BASEMENT [©]	TOPO	290	200	240	160	16	a 13a	200	370	280	210	300	420	290	220 1
	BASEO	-0	-0	-2	-0	-0	2	-0	-0	-0	-0	-0	0	-0	-0 }
	THICKNESSO	-0	Q-	-a	Q-	-0	-0	-0	-0	-0	-0	-0	0	-0	-0 1
	Ωmo	34980	46480	687560	\$9670	0 322	40 5192	10 18990	30920	668830	12800	27610	426640	654160	4377501
Ves Pointo	D		50	160	17¤	180	19a	200	210	22a	230	24a	250	26a	270
CURVE YPEO	a	Q	Ho	QHo	QHo	KHO	QHAO	Ho	HAO	KHO	QHo	QHo	Ho	KHO	Ho
LTIHOLOGYO	0		0	C	0	a	0	o	0	0	o	a	a	0	C
TOP-SOILO	TOPO		00	00	00	00	00	00	00	00	00	00	00	00	00
	BASEO		10	10	10	10	10	90	20	10	10	10	30	30	50
	THICKNESS	30	10	10	10	10	10	90	20	10	10	10	30	30	50
	Omo	11	0480	26840	23280	6430	20300	13560	11200	5880	28690	60060	14980	11220	17100
	TOPO		10	10	10	10	10	-0	-0	10	10	10	-0	30	-0
LATERITIC- CLAY0	BASEO		40	60	60	30	60			30	100	100	~	100	
	THICKNESS	50	20	50	50	20	50		~	20	00	00	~	70	~
	montest	~	50	55	55	202	50	~	~	20	30	30	~	10	~
	Ωmo	4	870	11470	5080	502	4860	-0	-0	32540	17690	11510		15780	-0
WATER	TOPo		40	60	60	30	60	90	20	30	-0-	100	30	-0	50
BEARING	BASEO	1	20	280	230	250	140	210	50	320	-0	210	60	-0-	220
SANDY	THICKNESS	io i	80	220	170	220	80	120	30	290	-0	110	30	\$	170
&GRAVELO	Ωmo	1	060	5220	1520	1730	850	590	1440	470	-0	1660	300	-0	2330
FRACTURED- BASEMENTO BASEMENTO	TOPo		-0	-0	-0	-0	140	-0	50	-0	100	-0	-0	100	-0
	BASEO	-	.0	-0	-0	.0	230	-0	620	-0	320	-0	-0	320	-0
	THICKNESS	20	0		-0	.0	90		570	-0	220	.0	.0	220	.0
	Omo	~	2	~	0		2340	-	0770	0	0150		~	0310	
	TOPo	1	20	280	230	250	230	210	620	200	320	210	60	320	220
	DASES	-	20	200	230	255	230	215	020	290	520	210	00	520	225
	THICKNER	10	~			~~	ç		0			~	÷ -		
	THICKINESS	~	-0	-0	6071	522	-0	-9	-0	-0	-0	-0	-2	-0	-0
	Ωmo	79	760	19980	10	40	343140	297420	67829	20570	19260	10950	12540	19240	962810

 Table 1: Correlation Table

CONCLUSIONS

This present work presents the results of vertical electrical sounding for groundwater occurrence in the crystalline basement terrain at Bishini area in Kaduna state, North Central Nigeria. Interpreted sounding curves revealed predominant of the weathered layer aquifer (63%) while the weathered/fractured (unconfined) aquifer (7.4%) was least represented. Three to five electro-stratigraphic units were delineated in the study area, namely: the topsoil (indurated laterite), lateritic clay, weathered basement rock, fractured basement rock and fresh basement. The weathered and / fractured basement rocks constitute the aquiferous zones in the area. The depth to basement varies from 6m at VES 25 representing the basement high to 62m at VES 21, the deepest points in the study area which corresponds to basement depression. VES 8, 11, 12 and 21 could be considered for drilling with an average depth of 40 – 60m depending on sounding point.

Figure 4: Depth to Basement Rock

REFERENCES

- 1. C. N. Akujieze, S. J. L. Coker. and G. E. Oteze. (2003). Groundwater in Nigeria-a millennium experiencedistribution, practice, problems and solutions. *Hydrogeology J.* Vol.11: pp. 259-274.
- 2. L.O. Azeez. (1972). Rural water supply in the Basement Complex of Western State, Nigeria. *Hydrol. Sci Bull.* 17, 77-110.
- 3. A. E. Bala. and E. C. Ike (2001). The aquifer of the crystalline basement rocks In Gusau area, Northwestern Nigeria. J. Min. Geol. 37(2): 177-184.
- P. H. Gleick. (1996). Water resources. In Encyclopedia of Climate and Weather, ed. by S. H. Schneider, Oxford University Press, New York, vol. 2, pp.817-823.
- D. Humaira. and L. M. Jose. (2009). Bridging Divides for Water. 5th World Water Forum (Water Related Migration, Changing Land use and Human settlements, Istanbul, Turkey, 17 – 18 March, 2009). UNW – DPC Publication series. Knowledge No. 4. P5.
- 6. O. Mazae. W. E. Kelly. and I. Landa. (1985): A hydrogeophysical Model for Relations between Electrical and Hydraulic properties of Aquifers: J. Hydrology.
- M. O. Olorunfemi. and A. I. Olayinka. (1992). Alteration of Geoelectric in Okene area and Implication for Borehole Sitting. Journal of Mining and Geology, pp. 403-411.
- 8. M. O. Olorunfemi & M. A. Oloruniwo (1985). Geoelectric Parameters and Aquifer Characteristics of Some Part of South Western Nigeria. Journal of Mining and Geology.
- 9. A. O. Oyinloye. and O. L. Ademilua. (2005). The nature of aquifer in the crystalline basement rocks of Ado-Ekiti, Igede-Ekiti and Igbara odo areas, southwestern Nigeria. *Pak. J. Sci. Ind. Res.* **48**(3), 154–161.
- O. Olorunfemi. and A. S. Fasuyi. (1993). Aquifer types and the geoelectric/hydrogeologic characteristics of the Basement terrain of Niger State, Nigeria. *Journal of African Earth Sciences*. Vol. 16(3): pp. 309-317.